The micromechanics of three-dimensional collagen-I gels
نویسندگان
چکیده
We study the micromechanics of collagen-I gel with the goal of bridging the gap between theory and experiment in the study of biopolymer networks. Three-dimensional images of fluorescently labeled collagen are obtained by confocal microscopy and the network geometry is extracted using a 3d network skeletonization algorithm. Each fiber is modeled as a worm-like-chain that resists stretching and bending, and each cross-link is modeled as torsional spring. The stress-strain curves of networks at three different densities are compared to rheology measurements. The model shows good agreement with experiment, confirming that strain stiffening of collagen can be explained entirely by geometric realignment of the network, as opposed to entropic stiffening of individual fibers. The model also suggests that at small strains, cross-link deformation is the main contributer to network stiffness whereas at large strains, fiber stretching dominates. Since this modeling effort uses networks with realistic geometries, this analysis can ultimately serve as a tool for understanding how the mechanics of fibers and cross-links at the microscopic level produce the macroscopic properties of the network. While the focus of this paper is on the mechanics of collagen, we demonstrate a framework that can be applied to many biopolymer networks.
منابع مشابه
Micromechanics of cellularized biopolymer networks.
Collagen gels are widely used in experiments on cell mechanics because they mimic the extracellular matrix in physiological conditions. Collagen gels are often characterized by their bulk rheology; however, variations in the collagen fiber microstructure and cell adhesion forces cause the mechanical properties to be inhomogeneous at the cellular scale. We study the mechanics of type I collagen ...
متن کاملI-15: Survival and Development Competenceof Buffalo Preantral Follicles Using Three DimensionalCollagen Gel Culture System
Background: The aim of the present study was to develop a three-dimensional (3D) collagen gel culture system for the in vitro growth and survival of buffalo preantral follicles with or without growth factors. Materials and Methods: Buffalo ovaries were collected from a local abattoir and preantral follicles were isolated through microdissection. Isolated preantral follicles were put either in c...
متن کاملThermo-mechanical properties of polymer nanocomposites reinforced with randomly distributed silica nanoparticles- Micromechanical analysis
A three-dimensional micromechanics-based analytical model is developed to study thermo-mechanical properties of polymer composites reinforced with randomly distributed silica nanoparticles. Two important factors in nanocomposites modeling using micromechanical models are nanoparticle arrangement in matrix and interphase effects. In order to study these cases, representative volume element (RVE)...
متن کاملFibroblasts and monocyte macrophages contract and degrade three-dimensional collagen gels in extended co-culture
BACKGROUND Inflammatory cells are believed to play a prominent role during tissue repair and remodeling. Since repair processes develop and mature over extended time frames, the present study was designed to evaluate the effect of monocytes and fibroblasts in prolonged culture in three-dimensional collagen gels. METHODS Blood monocytes from healthy donors and human fetal lung fibroblasts were...
متن کاملCell migration through three-dimensional gels of native collagen fibres: collagenolytic activity is not required for the migration of two permanent cell lines.
Three dimensional gels of native type I collagen fibres have been used as a substratum for the growth and migration of Chinese hamster ovary cells (fibroblastoid cell line) and RPMI-3460 melanoma cells (tumorigenic cell line from Syrian hamster). Quantitative data concerning the migration of these cells from the gel surface into the 3-dimensional collagen gel matrix have been obtained. The migr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Complexity
دوره 16 شماره
صفحات -
تاریخ انتشار 2011